, Program No. 946.1

Multi-strip Western blotting of immunoprecipitates or total cell lysates shows that PRL induces the tyrosine phosphorylation of adaptor proteins of insulin
crosstalks with c-Raf/MEK/ERK cascade and positively regulates PRL-induced ERK1/2 phosphorylation; (2) PI3K-mediated ERK1/2 activation via c-Raf

Abstract THE ROUTES OF ERK ACTIVATION IN PROLACTIN-STIMULATED
Understanding the interactions that occur among the distinct signal transduction pathways, triggered by activation of the prolactin receptor (PRL-R), is B RE u ST C u N C E R C E L LS

receptor substrate (IRS) and Shc families as well as concurrently activates Src family kinases (SFKs)/focal adhesion kinase (FAK), Janus kinase/signal

transducer and activator of transcription (JAK/STAT), phosphoinositide-3-kinase (PI3K)/Akt and Ras/mitogen-activated protein kinase (MAPK) signaling

occurs regardless of signaling downstream of STATS, Akt and PKC, but depends on activities of JAK2, c-Src and FAK; (3) activated PRL-R largely utilizes ' I I I I I

a PI3K-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. These findings suggest Department Of PathOIOgy’ Anatomy & Ce” BIOIOgy’ Thomas Jefferson Un|VerS|ty, Phlladelphla’ Pennsylvanla 1 91 07

essential in studying the pathogenesis of metastatic breast cancer. Quantitative measurements of phosphorylation/activation patterns of the proteins by

pathwaysin T47D and MCF-7 human breast cancer cells, derived from the patients with infiltrative ductal carcinoma and expressing different amounts of i T T 1978 a a

PRL-R. A specific blockade of SFK/FAK, JAK2/STATS, PIBK/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) PI3K/Akt signaling pathway Ed Ita Aksam Itle n e! S Irs h a ACh a nta! An atO Iy Klyatkl n ) J an B H o€ k
that by interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells.
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inhibitory analysis of various signaling intermediates dowstream of the PRL-R and subse- § A : : 23 Iocatlc?n and subgeqygpt tyrosine phosphorylation of gdaptor protein Qab1 (B), which cont_alns. I|p.|d-b|nd|ng pleckstrin homology (PH)
. L. & o o domain. C. PI3K inhibition does not reduce total tyrosine phosphorylation levels of Shc or its binding to Grb2. D-E. Cell treatment with
| Quemlly meseled ine line-eouses o BRI SeEIo: ) < 4 2 6 2. Akt inhibitor VIII (10 M. 30 min) (D) or PKC inhibitor G 6850 (5 uM, 1 h) (data not shown) results in unchaged activation patterns of :
& , | E 41 E ERK1/2. F-G. Confirmation of a positive effect of PI3K on ERK1/2 responses by structurally different inhibitors of PI3K: PI3K-alpha-2 Concl USiOnS
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cold PBS (twice/each). The proteins were released from beads at 95°C in 4x LDS s ample buffer. the PI3K: Akt, p70 ribosomal protein S6 kinase (p70S6K) and S6 ribosomal protein (S6RP) (C). Despite a weak activation of S 15 S S cell detachment and death. Therefore these approaches, including Ras
Subcellular fractionation: isolation of soluble (Cyt) and particulate (Mem) subcellular fractions Ras GTPase (D), PRL stimulates c-Raf/MEK/ERK signaling cascade and results in the activation of cytosolic p90 ribosomal % Z 0 2 10 SIRNA. could not be used to quantify more accuratel the contributions
was carried out in digitonin-permeabilized cells (150 mg/ml, 10 min) as described previously [12]. S6 kinase (p90RSK) (E, left and right panels) in T47D and MCF-7 breast cancer cells. S 10 S S of Ras,-de endent and Ras.inde en}élent ot 0 ho};mone- cvtokine.
Electrophoresis: proteins were resolved by LDS-PAGE at 140V in 4-12% gradient Bis-Tris gels A B a ~ . S . th? torinduced ERK1/2p it P  CY ’
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Blocking, Ab dilution and washing solutions contained Tris-buffered saline with 0.5% Triton X-100. r— 2 e p-FAK (Y576/577) Time, min Time, min Time, min Refe rences
Protein detection: the chemiluminescent signals of protein bands were detected by ECL using a e EEEEEeE T |STATS I 11 1 L p-FAK (Y925) Fig. 5. A. PRL induces Rac1 activation in T47D cells. B. Inhibition of PI3K by WT concordantly prevents activation of PAK1 and PAK1-
SuperSignal West Dura Extended Duration Substrate (Pierce Biotechnology) and their signal net 4 T T T — p-FAK — dependent phosphorylation of c-Raf at Ser338 residue, critical for c-Raf activity. C-D. Rac1/2/3 inhibition by EHT 1864 (10 uM, 1 h) or 1. Freeman, M. E. et al. (2000) Physiol Rev 80(4): 1523-1631
intensities were quantified by densitometry analysis software using KODAK Image Station 440CF. _Gab1 i bbb eed R combined inhibition of PAK1 and PDK1 by OSU-03012 (25 uM, 30 min) greatly suppresses PRL-induced ERK1/2 activation in MCF-7 2. Goffin, V. et al. (2002) Annu Rev Physiol 64: 47-67
Signal intensities of a phosphorylated protein were normalized by signal intensities of total (phos- | ™ .- p~iaa B | - ————— s ey s | P-C-SIC and T47D cells, whereas inhibition of Ras processing by the farnesyl transferase inhibitors manumycin A or FTase Ill (2 yM, 7 h each) 3. Bernichtein, S. et al. (2010) J Endocrinol 206(1): 1-11
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changes over basal levels (in unstimulated cells). Kinetic curves and charts were plotted based on v, e —— p-Akt 6 TR~ p-Akt PRL PRL + EHT 1864 100 ~ 120 5. Clevenger, C. V. et al. (2003) Endocr Rev 24(1): 1-27.
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Cells were photographed at 0 and 72 hours after wounding with by inverted light microscope at 4x Time, min Time, min g 20 | g, 2 ey 12' Ben.' d ’N' t. el a2b§)9 M) | SO t';. |e5. 25(6). )
magnification. Area of each wound surface was quantitated using Adobe Photoshop software. The Fig. 3. A. Inhibition of Src family kinases by Su6656 (5 uM, 30 min) does not affect JAK2 activation (1), but greatly reduces D - 13' K.O”“:'l(().v’ Ae 3'A(k ')t' X és 20|8é M thods Mol Biol. 536 149-161
mean percentage wound closure was calculated using the equation (S2-S1)/S2*100, where S2 is tyrosine phosphorylation of STATS (2), FAK (4), Gab1 (5), protein tyrosine phosphatase SHP2 (6) and nearly abrogates the 0 © 0 A — LA, OB SEIIETE, = ( ) SHoLs (? 0% 090, 159"
cell-free scratch area at 0 h after wounding, S1 - cell-free scratch area at 72 hours after wounding. activation of Akt (7), MEK (8) and ERK1/2 (9) upon T47D cell stimulation with 10 nM PRL. B. Inhibition of FAK by PF573228 72h | Control  EHT 1864 0 05 1 2 4 8 16 14. Aksamitiene E et al. (2007) Electrophoresis 28(18): 3163-73
Proliferation of cells cultured in PRL-supplemented SFM in the presence or absence of inhibitor (0.5 uM, 2 h) prevents FAK autophosphorylation at Tyr397 (a binding site for SFKs, PI3K and PLCy) (1) and Src-dependent EHT 1864 concentration (uM) ACkn 0W|ed ements
was assessed after 72 h by AlamarBlue oxidation-reduction indicator assay (BD Biosciences). phosphorylation at Tyr576/577 (2) and Tyr925 (a binding site for adaptor protein Grb2) (3) residues without affecting protein Fig. 6. Effects of Rac/PAK inhibition by EHT 1864 (2 uM, 72 h or as indicated) on MCF-7 g
kFIuorescence was measured in octuplets using microplate reader (BioTek) at 530Ex/590Em set. ) \ expression levels of FAK (4), but resulting in partially decreased activation of Akt (6), MEK (7) and ERK1/2 (8). ) \ cell migration (left and middle panels) and T47D cell growth (right panel). *** p<0.001 ) This research was supported by NIH Grant #GM059570




